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SUMMARY

The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with
an eccentrically mounted shaft. A transient analysis was developed and used to predict numerical data for the
experimental cases. The three-w ave journal bearing ran stably under dynamic loads with orbits well inside the
bearing clearance. The orbits w,:re almost circular and nearly free of the influence of, but dynamically
dependent on, bearing wave shape.

Experimental observations lor both the absolute bearing-housing-center orbits and the relative bearing-
housing-center-to-shaft-center oJbits agreed well with the predictions. Moreover, the subsynchronous whirl
motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds.
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SYMBOLS

damping coefficient between bearing housing and its support, N-s/m

film damping coefficients, N.s/m

bearing radial clearance, m

fluid film force components along and perpendicular to line of centers O] -O (fig. 1), N

steady-state fluid film force components along and perpendicular to line of centers O_ - O, N

fluid film force components along and perpendicular to line O0 - O (fig. 1 ), N

fluid film thickne +s, m

stiffness coefficie it between bearing housing and its support, N/m

film stiffness coelficients, N/m

bearing-housing total mass, kg

bearing-housing center (fig. 1)

fixed center of rol ation (fig. 1)

shaft center (fig. i)

fluid film pressure, Pa

shaft radius (bear ng normal radius), m

coordinate along ine of centers

space (displacement) between shaft center Ol and bearing-housing center O, m

S components along and perpendicular to line of centers Ol - O, m

time, s; coordinat_ perpendicular to line of centers

velocity between shaft center O1 and bearing-housing center O, m/s
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V components along and perpendicular to line of centers O, - O, m/s

difference between shaft surface and bearing surface speed projected on perpendicular direc-
tion to shaft surface, m/s

component of shaft surface speed along its circumference, m/s

axial coordinate parallel to shaft axis

bearing eccentricity relative to shaft (relative movement) (fig. 1), O_ - O, m, also bearing
line of centers

bearing sleeve-to-shaft eccentricity ratio

bearing run-out (absolute movement) (fig. 1), O0 - O, m

bearing-housing absolute eccentricity ratio, _0 = O0 - O

axes along and perpendicular to direction O0 - O (fig. 1)

angular coordinate along shaft circumference, rad

fluid film dynamic viscosity, N.s/m:

fixed shaft run-out (fig. 1), O0 - 0,, m

angle between line of centers O_ - 0 and Oo - 0 (fig. 1 ), rad

rotation angle of Oo - 0 around Oo (fig. 1), rad

rotation angle of O0 - O, around Oo (fig. 1 ), tot, rad

angular rotation speed (fig. 1), rad/s

INTRODUCTION

The wave bearing concept has been under development since 1992. Thus, the steady-state and dynamic
performance under fixed side load (refs. 1 and 2) and the influence of both the number of waves and the ratio
of wave amplitude to radial clearance (refs. 3 and 4) have been analyzed. Moreover, the steady-state charac-
teristics of the wave journal bearing and its dynamic stability have been experimentally measured. Good
agreement was found between the experimental data and theoretical predictions (refs. 5 to 8). In addition,
the experimental work revealed good dynamic behavior of the wave bearing when subsynchronous whirl
motion occurred. The wave bearing performed well, keeping the orbit of the subsynchronous motion inside
the bearing clearance (refs. 7 and 8). Consequently, the wave bearing should perform well under the dynamic
loading conditions that often occur in most rotating machinery. Any rotor can be subject to a dynamic load
caused by an unbalance, or a run-out, of the shaft. This dynamic load is a rotating load that has a rotational
speed equal to the rotor speed. Such a load can be simulated by running the bearing with a shaft that has a
fixed run-out. Therefore, a transient analysis was performed to predict bearing behavior under a rotating load.
Then an experiment was conducted to record the orbits of the bearing-housing center when the shaft has a
known fixed run-out.

ANALYSIS

Bearing-housing-center movement can be studied by using the motion equation of the center along and
perpendicular to the radial direction O0 - O (axes _ and q in fig. 1):
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MC - _o + Keo + dt = F_,

M e0 +2 +Keo_+Bv-o=_'-v, =Fq
clt ell ) dt

(1)

Also, figure 1 shows that the e_centrlcity e = Oj - O (where O_ -- O is the line joining the shaft center O_ and

the bearing-housing center O) aad that the shaft run-out p = O0 - O_. Assuming that the motion starts from the
downward vertical where the st aft and the beating are concentric (_ = 0), when the shaft rotates around O0

with the angular speed co, 9 makes the angle f_ and drives the bearing so that _0 makes the angle W.

The governing equations (1) are two scalar, coupled, nonlinear ordinary differential equations. These equa-
tions are integrated simultaneoudy by using a fourth-order Runge-Kutta method for known values of M, C, F;,

F,v K, and B and initial values (,f _0, _, de.ffdt, and d_/dt (ref. 9) The fluid film forces applied to the bearing
surface are

F_ = Fr cos cp+ Ft sin q)

Fq = Fr sin _p- Ft cos cp

(2)

The projections of fluid fibl force along and perpendicular to the line of centers are

Fr = Fro + KrrS r + KrtS t + B, rVr + BrtVt

Ft = Fro +KtrS r + KnS , + Bt,.Vr + BuV t

(3)

The bearing steady-state fo:ce and dynamic stiffness and damping coefficients can be computed by inte-
grating the Reynolds pressure equation at each time step location of the shaft with respect to the bearing. This

equation, assuming the gas will expand isothermally, is

(4)

The Reynolds equation (4) can be integrated by using its complex form and a small perturbation technique.
This procedure is described, fol instance, in reference 10.

The solution procedure can start with an input data set (beating length, diameter, radial clearance, shaft
turning speed, shaft run-out, and the time step). In addition, a set of starting values at time = 0 are required:

3e--£-0= 0
eo = P, at

_=o, O--E=o
at

{5)

Then, at each time step, where e0, _, and f_ (_ = tot) are known, the O00_O triangle (fig. 1) is known, and

all geometrical parameters as well as displacements and velocities can be calculated. Therefore, the Reynolds
equation (4) can be integrated over the fluid film. Then, all parameters of the motion equation (1) are known

as well as the starting values fcr the next time step (_0, _, and their time derivatives _). The procedure is

repeated until the orbits are completed.
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APPARATUS

Thewavebearingrigdescribedin references5to 8wasusedtoperformtheexperimentalwork.Theaxis
of thespindlethatdrivesthisrig isvertical,andtheexperimentalbearinghousingismountedontherigtable
andsupportedbytwopressurizedthrustplates.Thisconfigurationkeepsthebearinghousingstiffin theaxial
andangulardirectionsbutallowsit to movefreelyin theradialdirection.Theexperimentalshaftis anexten-
sionof therigspindleshaft.It ismountedintothetaperedendof thespindleshaftwithafixedrun-out(forthis
experiment11_0.1lam).A crosssectionbyahorizontalplaneof theexperimentalbeatingis shownin figure2.
ThefixedrotationcenterforthesystemisO0.ThecentersoftheshaftandthebeatinghousingareOjandO,
respectively.Theshaftrun-outO0- Oj isfixed.

Thegoalof thisworkwastorecordandpredicttheabsoluteandrelativeorbitsof thebearing-housing
centerO.Themotionof thecenterOcanbeobservedlikeanabsolutemotionforinstancewithregardto
thecenterof rotationO0or likearelativemotionwithregardtothecenteroftheshaftO_.Figure3showsthe
experimentalbearingsetup.Twosetsof light-beamproximityprobeswereused.Twoprobeswerelocatedat
90° in thebottomsideof thebearinghousingand"looking"attheshaft.Theseprobesdetectedtheorbitof
thebearing-housingcenterrelativeto theshaftcenter(O- O_).Thesecondsetof twoprobeswerelocated
alsoat90° butheldbysupportsfixedontherig tableand"looking"atthebearinghousing.Theselatterprobes
detectedtheabsoluteorbitof thebearing-housingcenter(O- O0).A polishedcircumferentialstripwasmade
ontheoutsidebearing-housingsurfacetoavoidasperitynoisefromitsroughness.Thelight-beamprobeswere
calibratedbyusingtheknownfixedrun-outoftheshaft.Thedisplacementof theshaftwasmeasuredwitha
precisionof 0.1_m.Thetheoreticalpredictionsof theorbitsweremadethroughatransientanalysisof the
bearing-housing-centermotion.

RESULTSANDDISCUSSION

Theexperimentalbearingwas51__.0.01mmindiameter,58±0.01mmin length,20±1_tmin radialclear-
ance,and2.2_+0.01kgin mass.Thebearinghadthreewaveswitha0.5±0.07ratioof waveamplitudetoradial
clearance.Theshaftwassetwithan11±0.1_tmrun-out.Thedamping,B in eqs. (1), in the bearing-housing

support and connection system was found to be 0.05 N.s/m. The stiffness, K in eqs. (1), had little influence on

the bearing orbits and was approximately zero. The top proximity probes (fig. 3) produced 500 mV for 5.78- and

4.78-_tm displacements in the horizontal and vertical directions, respectively, and the bottom probes produced

500 mV for 6.11- and 6.90-_tm displacements in the horizontal and vertical directions, respectively. (Horizontal

and vertical directions refer to the directions on the oscilloscope photographs shown on the tight sides of fig-
ures 4 and 5, 90 ° apart in the physical plane.

The test rig was run at four speeds up to 5540 rpm. Below 3100 rpm both the observed and predicted orbits
of the bearing-housing center showed that a subsynchronous whirl motion took place inside the bearing clear-
ance. Figure 4 shows both the predicted and observed orbits for relative and absolute motion of the bearing-
housing center when the shaft rotated at 2156 rpm. When the speed increased above 3100 rpm, the motion
stabilized, as shown in figure 5 for a shaft speed of 5539 rpm.

Both the absolute and relative observed orbits of the beating-housing center are shown as oscilloscope

photographs on the right sides of figures 4 and 5. On the left sides of these figures the computed orbits are

presented with a time step of 0.000001 s (10 _ts) and for 30 000 steps. The experimental orbits appeared as
ellipses rather than circles because of the difference in the probe sensitivity in the horizontal and vertical

directions mentioned above. Both experimental orbits in figure 4 have a specific pattern caused by subsyn-

chronous whirl motion. The transient analysis also revealed this pattern. Both the experimental and theoretical

absolute orbits (fig. 4(a)) were within a radius of 5 to 12 lam. Both the experimental and theoretical relative
orbits (fig. 4(b)) were within a radius of approximately 5 lam.

The bearing stability increased as the running speed of the rig increased. Figure 5 shows the results for

5539 rpm. The experimental orbits were perfectly stable. The shaft run-out made large absolute orbits of the

beating housing (right side of fig. 5(a)). However, the radius of the relative orbits was approximately 2.5 lam

(right side of fig. 5(b)) despite the 11±0.1 _tm shaft run-out (i.e., the bearing followed the shaft very well). The

predicted orbits, shown on the left side of figure 5, matched very well with the observed orbits. The theory also

showed that the beating would run stably. After a couple of rotations from the starting point the orbits were
stable, keeping almost the same path.

NASAFFM--2002-211079 4



The relative orbits of the b_.aring housing increased but the absolute orbits decreased as the speed

increased. This effect showed the influence of both external damping and bearing inertia on the magnitude

of orbit radius. In addition, the _earing actually ran more and more stably as speed increased, and the theory

showed that the number of rotations before the bearing reached a stable orbit would diminish as speed

increased.

All runs showed only a sm_dl influence of the beating wave shape on the orbit shape despite the experi-

mental beating's large wave amplitude ratio, 0.5_+0.07. This result confirmed that a wave bearing with few

waves, such as three, worked well under dynamic loads. The bearing behaved in such a way as to average the

influence of the waves.

Two types of shaft-centerec motion can be defined with respect to the center of the bearing: (i) stable

unbalance or run-out orbits (e.g, fig. 5(b)), where the center of unbalance rotates at shaft frequency: and

(ii) fluid-film-induced unstable whirl orbits (e.g., fig. 4(b)) that are superimposed over the stable unbalance or

run-out orbits at a specific freqrency different from the rotation frequency. The unbalance motion (i) is seen in

each graph, but the unstable whirl (ii) occurs only at specific rotational speeds.

CONCLUSIONS

The dynamic behavior of the wave journal bearing was determined by running a three-wave beating with

an eccentrically mounted shaft. The following conclusions were reached:

1. A dynamically loaded three-wave journal bearing can run stably, averaging its behavior when the

wave exposure to the l(,ad is changing. The orbit radius of the relative motion between the shaft and

the sleeve is smaller than the bearing clearance, and the motion is contained within the bearing

clearance. The orbits aie almost circular and nearly free of, but dynamically dependent on, the influ-

ence of beating wave saape.

2. Good agreement betwe_'n experimentally observed and theoretically predicted orbits was found at all

tested speeds for both relative and absolute motions.

3. The subsynchronous whirl motion influences the bearing-housing-center orbits if the bearing speeds

are in the region where the bearing itself is susceptible to subsynchronous whirl instability. When the

bearing runs under sucL, circumstances, the orbits show a specific pattem. This pattern was observed

experimentally and was also confirmed theoretically by the transient analysis.
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Figure 1.--Geometry of three-wave

journal bearing. Rotation center, O0;
shaft center, O1; and bearing-housing
center, O.

Figure 2._Cross section of three-wave
journal bearing by horizontal plane.

Figure 3.--Experimental bearing setup.
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(b) Predicted Observed

Figure 4.mPredicted and experimentally observed orbits of three-wave journal bearing at 2156-rpm shaft

rotating speed. (a) Absolut_ bearing-housing-center orbits. (b) Relative bearing-housing-center-to-shaft-

center orbits.
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Figure 5.mPredicted and experimentally observed orbits of three-wave journal bearing at 5539-rpm shaft

rotating speed. (a) Absolute bearing-housing-center orbits. (b) Relative bearing-housing-center-to-shaft-
center orbits.
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